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The uniaxial motion of elastic media with rapidly varying spatial heterogeneities is 
investigated. Homogeneous dispersive media that provide long wavelength approxima- 
tions to elastic media with periodic heterogeneities are developed. Applications to 
finite difference calculations in media whose properties vary rapidly within a wavelength 
are presented. 

In investigations of wave propagation phenomena, it is frequently desirable to 
solve the pertinent equations by time-marching numerical codes. Unfortunately, 
even for the simple case of one-dimensional motion in elastic media, the compu- 
tations can become prohibitively expensive when rapidly varying spatial hetero- 
geneities are present. To accurately reproduce the effects of heterogeneities on 
wave motion, a large number of zones per wavelength is required. As a result, 
the computations do not extend to distances much larger than a wavelength. 

The main effect of elastic heterogeneities on wave motion is dispersion. However, 
the same kind of dispersion is generated in media that are homogeneous, provided 
their sound speeds are suitably chosen functions of frequency, Such media offer 
a numerical advantage because their motion can be calculated by zones whose 
dimensions are not limited by the dimensions of heterogeneities. In this paper, 
we examine uniaxial propagation in heterogeneous periodic elastic media. Through 
harmonic analysis, we show that at long wavelengths any periodic elastic medium 
behaves like a homogeneous dispersive medium. The simplest of these media has 
a constitutive relation that contains, in addition to the usual Hookean term, 
another term that, in the time domain, is proportional to the second time derivative 
of the strain. The transient properties of this medium are examined, and the stability 
of possible finite difference analogs is discussed. A particular finite difference 
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analog, which is simple to implement in currently existing codes, but which, 
nevertheless, places undesirable limitations on the mesh variables, is investigated 
in some detail. An example comparing the exact transient motion developed in a 
periodic bilaminate to the motion obtained from the difference equations is 
presented. 

Although the analysis is restricted to one-dimensional motion in periodic media, 
it seems that the method may also find applications in calculations of motion in 
media that are not periodic, for example nonperiodic heterogeneous media that 
look homogeneous and isotropic on a macroscopic scale. 

HARMONIC ANALYSIS 

Let the time harmonic dependence be e-iwt, where w is the applied frequency 
(a real number). Let x, zZ(x, o), 6(x, W) and C(x, w) represent the Lagrangian 
particle position, harmonic particle velocity, harmonic particle compressive 
stress, and harmonic particle strain for one-dimensional motion. Finally, let the 
referenced density p(x), inverse constraint modulus m(x) and reference sound 
speed c(x), 44 = MpW m(x)) lJ2 be positive piecewise-continuous periodic , 
functions of x with period L. The uniaxial motion in heterogeneous elastic media 
is governed by the following equations relating these quantities 

%/ax = -id, 

aqax = iwp(x) 22, 

2 = -@n(x). 

(1) 

(2) 

(3) 

The solution of the above equations has been investigated in [l], where it was 
shown that, with the possible exception of the frequencies at which 

sin[wyu,(w)] = 0, 

the velocity and stress can be written as 

TX “‘I qx: co) = f+(w) ei(or’uJw)) [ F+k w) z+(w) G+(x , ,,I 
+.L(w> e- iLx/a,Ld) 

1 
F-(x, w> 

Z-(w) G-(x, w) 1 ’ 

where F*(x, w), G&, w) are periodic functions of x with period L and 

F&L, w) = G&L, w) = 1, n = 0, 1, 2 ,.... (5) 
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The functions u,(w), Z+(w), and f*(o), which are independent of x, represent, 
respectively, the wave phase velocity, forward and backward wave impedances, 
and particle velocity amplitudes generated by boundary conditions at x = 0. 

The earlier investigation showed that the phase velocity and wave impedances 
can be obtained from a certain matrix B(x, w), 

M-G w) bl,(X, w) sxy w) = [b&x, IXJ) b,,(x, OJ) ’ 1 
which is the solution of the matrix differential equation 

am, w) = iw 0 
iiX [ PC-4 

,‘$)] B(x, w), (6) 

subject to the boundary condition 

An examination of this matrix revealed that (a) its determinant is independent of 
x and equal to 1, (b) its diagonal elements b,,(x, W) and b&x, W) are always real 
functions, and (c) the off-diagonal elements b&c, w) and b,,(x, w) are purely 
imaginary. It turned out that at x = L, the eigenvalues of this matrix represent 
the wave propagation factors e*i’wLlc~(w)), whereas the corresponding eigenvectors 
[;,,,,I give the wave impedances. In particular, the phase velocity satisfies the 
dispersion relation 

M-L w) + ML, w) cos [$$I = 2 ? 
whereas the wave impedances are given by the equations 

Z&J) = 
eiti(wL/vp(w)) - ML w) = ML, w> 

ML w) e+~hL/~pb)) _ b&L, w) ’ (8) 

Utilizing usual low frequency procedures, power series expansions for the 
elements of B(t, w) were obtained. It was deduced from Eq. (7) that at long wave- 
lengths (or low frequencies), the wave phase velocity is a real even function of 
w and has the power series expansion 

21, = C(l - up2 - v&9 - -*.), 

where the static speed Z is given by 

(9) 

’ = [U/L) Jt p(x) dx (i/f.) Ji m(x) dex]ljz ’ (10) 
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The quadratic coefficient ~1~ , which is responsible for long wavelength dispersion, 
is related to the spatial variations of p and m as follows 

(11) 

and is always positive if the medium impedance p(x) c(x) depends on x (when the 
impedance is independent of x the phase velocity does not depend on o and 
fJ2 = u4 = **a = 0). The higher-order coefficients, whose relation to p and m 
may be obtained by straightforward extension of the analysis of [I], provide 
higher-order long wavelength corrections to the quadratic term 

I up4 + *** / = U[(wL/?)4]. 

The wave impedances, which in general are complex functions of frequency, 
have the long wavelength expansions [2] 

I i WL Is,” p(x) .ft m(y) dy d-v - sf m(x) .f; p(y) dy dx] Z*(w) = j-pc 1 & - _ 
I 2 c J; p(x) dx j; m(x), dx 

(12) 

where p is the average density 

,i5 = + s,L p(x) dx (13) 

In the rest of the paper the results already presented are utilized in developing 
approximations to periodic elastic media. The approximations, which are accom- 
plished by simplifying both the phases and amplitudes of the waves of (4), reduce 
the long wavelength motion of periodic elastic media to the motion of homogeneous 
dispersive media. 

A~~PLITUDE APPROXIMATIONS 

As seen from (1) and (2) at the static limit of zero frequency the velocity and 
stress are independent of position. Accordingly, one can expect that for wave- 
lengths that are sufficiently long the amplitudes F&, w) and G*(x, w) do not 
depend on x. In order to derive conditions under which the spatial amplitude 
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dependence may be neglected, we consider waves moving in the +x direction 
(similar arguments apply for the waves moving in the other direction). Because 
of the amplitude periodicity, we may restrict the analysis to the region in the first 
unit cell, i.e., 0 < x < L. When the strain is eliminated from (l)-(3) and in the 
resulting equations expression (4) is substituted, an integration, with the help of 
(5), of the final result gives 

F+(x, w> = 1 + iw [Z+(d Jo’ 4~) G+(Y, w) dr - & Ioz F+( y, w) dy] , (14) 

z 
G+(x, w) = 1 + iw P(Y) F+(Y, w) 4~ - 1 - I= G+(Y, ~1 dy], (15) 

G4 0 

from which, in conjunction with (9), (IO), (12), and (13) follows 

F+(x, w) = 1 + iw(x/E) al(x) + O(d), (16) 

G+(x, co) = 1 + iw(x/Z) a,(x) + O(UJ~), (17) 

where the functions al(x) and a,(x) are related to the spatial variations in p and m 
as follows 

a2w = 
(l/x) St P(Y) & - U/L) s,L P(Y) 4 

(l/L) J; P(Y) dr * 

The amplitude expansions show that we may neglect the spatial amplitude 
dependence provided that 

lhm ax>l < 1, (18) 

I(~Xl4 a2Wl < I, (19) 

where 0 < x < L. The inequalities indicate that when the wavelength A, 
h = Z~T@/W), is sufficiently larger than the period L, the spatial amplitude depen- 
dence is negligible. However, the length of h compared to L depends on the spatial 
variations of p and m. In particular, the inequalities show that the stronger the 
spatial variations of the material properties (i.e., the larger the maximum values 
of ) al(x)1 and I a2(x)l) the larger the ratio A/L should be. In the trivial case where 
the density and inverse modulus are constant the amplitudes are independent of 
x and A/L can be arbitrarily small. 

When, in addition to (18) and (19), uzw2 is much smaller than 1, i.e., 

v& << 1, 
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which is a condition applicable to long wavelengths since from (11) follows that 
uz < (l/24)(L/C)2, then from (9) and (12) follows that the waves of (4) can be 
approximated by the following expressions 1 rcx “‘I 6(x: w) - f+(w) 

i(ur :L’&J)) 1 
e 1 3 i+zJ(w) 

+ f-cw) e-i(wxiop(w)) 
Lpz!D(“)l- c2*) 

Thus, the long wavelength fields are solutions of the equations 

al? -1 
- e iwpu, 
ax (22) 

which describe motion in a homogeneous dispersive medium of density p and sound 
speed v,(w). 

Even though the homogeneous dispersive medium equations are simpler than 
the heterogeneous medium equations, their utility in transient calculations is 
limited in particular since in most cases, it would be difficult to provide a full 
description of the frequency dependence of the phase velocity. However, it seems 
possible to obtain, through experimental or other means, the dominant low 
frequency behavior of the wave phase velocity. For this reason, further simpli- 
cations are more appropriate. 

PHASE APPROXIMATIONS 

A particularly simple homogeneous dispersive medium, whose solutions 
approximate the long wavelength motion in periodic media inside a limited range 
from the boundary, results when the function uD2(w) is approximated by its low 
frequency terms up to second order. Let @c, w), 3(x, w), and g(x, w) represent 
the velocity, stress and strain in this medium. The motion is governed by the 
conservation equations 

aO/lax = -iwE, 

as/ax = iwp0, 

and the constitutive equation [3] 

s = -P?(l - 2v,w3 8. 
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Its harmonic solutions are 

fi(& w) = f+(w) ei("~+/i(l-2F,w*)l'~) + fJw) e-i(wr/E(1-2s,w?)*'2) 

qy, w) = $(I - 2&p’)‘;~f+(w) @4m--:!~pJ2P’*) - jjT(l - 2p,w2)1/2 

x L(w) e- i(",r;~(l-z~?",211'?) 

A comparison with Eq. (20) shows that inside the range x < X, where X is chosen 
such that the phase difference 

wx ox __- I 
L’D(W) ?(l - 2Z’+J2)1/2 1 

is equal to 2rr, the homogeneous dispersive medium velocity and stress approximate 
the velocity and stress of the heterogeneous medium. When all but the dominant 
terms can be neglected, the range can be found from 

X= 
2s 

wyu4 - $c2”) . 

By retaining higher-order terms in the expansion for o,‘(w), the range inside 
which the homogeneous dispersive media are useful for approximating the hetero- 
geneous medium motion can be increased. For example, it is not difficult to show 
that for the next higher-order dispersive medium. whose constitutive relation is 

s = --pC2[1 - 2u,w” + (t’p” - 20,) w”] & 

the range is inversely proportional to o7 

X = 1 const/w7 I. 

Whereas at the limit of zero frequency, the heterogeneous medium generates 
velocities and stresses that are independent of x, the heterogeneous static strain 
varies with position according to the detail nature of the heterogeneities. Therefore, 
the strain &x, w), which is independent of position when o = 0, cannot represent 
2(x, W) accurately. However, Z(X, w) may be obtained from s as follows 

C(.Y, w) w -m(x) 9(x, co) 

provided the detail spatial variation of the modulus is given. 

TRANSIENT MOTION 

Like the motion in elastic media, the transient motion of simple dispersive 
medium, which is governed by the equations 

0, = Et . 
s, = -pu/,, 
S = --pc’(E + a2Ett), 

(23) 
(24) 
(25) 
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where the constant a is equal to (2r#*, has the property, which is desirable for 
numerical calculations, of being stable. The specific internal energy 8(x, t), 

is always positive definite for an initially quiet medium (E(x, 0) = E&C, 0) = 0) 
[4]. It is given by 

B = +?E + $?a2(Et)2. 

In numerical applications, the motion generated in an initially quiet medium is 
of most interest. To get an idea of what to expect in numerical discretizations of 
the motion of this medium, we obtain the impulse response. Suppose that a 
S-function velocity, U(0, t) = S(t), is applied at x = 0. Laplace transform theory 
shows that the fields are given by the expressions 

U(x, t) = HO J’ sin(yt’) sin ( (1 T’-v2)1,2 ) dq’ + S(t) c+, 
rra --1 

S(x, t) = pz [Z J_: (cos yt’ - 1) cos ( 
(1 :‘;2ya ) 

(1 - y2)1/2 Czjj 

+ q (1 + x’) e-“’ + a&t) e-z,], (27) 

E(x, t) = - g J:: (cos yt’ - 1) cos m --I’ 
(1 :‘;2)1,2 (1 :;2)~,2 - --gy e ’ 

(28) 
where N(t) is the Heaviside function 

If(t) = 0, t < 0, 
= 1, t > 0, 

and the normalized variables t’ and x’ are 

t ’ = t/a, 

x’ = x/Ca. 

The expressions may be verified by substitution into (23)-(25). The following 
integral (and its spatial derivative) is useful in the verification process [5] 

s a ( -- 5 0 1+t2 (1 laE3’ ) sin@‘& df 

= L x’e-xs* 
4 
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The impulse response of this medium is quite unlike the response of elastic 
media (case where a = 0). The response may be broken up in two parts that 
depend on their behavior near t = 0. The first part, which consists of the integrals 
appearing in (26)~(28). is zero for t = 0. The second part, which consists of the 
double &function, S-functions, and Heaviside function appearing in (26)-(28), 
is discontinuous at t = 0. The second part shows that, unlike elastic media, this 
medium is capable of transmitting information instantaneously. However, the 
information is transmitted with a magnitude that decays exponentially with x 
with a decay length ?a. Thus, particles whose distance from another particle 
stationed at, say, x0 is much larger than Pa cannot experience significant instan- 
taneous motion based exclusively on what happens at that instant at x,, . In effect, 
each particle has significant instantaneous communication with neighboring 
particles that do not lie farther than a distance comparable to ?a. Accordingly, 
one would expect that numerical instabilities will develop in computations with 
finite difference analogs of Eqs. (23)-(25) if the spacing between adjacent mesh 
points is much smaller than Ca. 

A FINITE DIFFERENCE TIME MARCHING ANALOG AND ITS STABILITY 

A finite difference time marching analog of the differential Eqs. (23)-(25) may 
be constructed by attaching to difference equations for one-dimensional motion 
in elastic media an appropriate finite difference analog of the extra term a2Ett . 
Although there are many finite difference equations useful for elastic computations, 
for purposes of restricting the discussion, we adopt the von Neumann-Richtmyer 
scheme, which is particularly simple and well known [6]. 

Let the finite difference gridpoints have equal spatial and time spacing d.u and dt. 
Let the abbreviated notations Ugf(1’2), Ei+c1,2j , S,‘$+C1,2) stand for U(x,,, , tn+(lj2)), 
E(x,+(,!~) , t”) and S(X,+(,,~) , P), where m = 0, 1, 2 ,..., n = 0, 1,2 ,..., and 
x, = m Ax, x,+clis) = x,,& + (Ax/2), t” = n At. t n+(1/2) = tn + At/2. The selected 
difference equations are 

S”+’ --’ E;&, rnf(l/Z) = --PC 
[ 

- 2E+(,:z, + E:31,2)) 3 (30) 1 

At the start of each computational cycle, UzLfoif) and all other quantities of super- 
script n or less are known. To start computations, we find, for each m, Ed&,, 
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from (29). Then, we obtain Sz’;:,,,, , for each m, from (30). To finish the cycle, 
we compute, for each m, U,,, 7’+(3’e) from (31). To compute motion generated by a 
boundary velocity v(t), the variables Ut+(““) were assigned the values ~(t~+ul~)). 
The variables iIJJ$: , EEz+u,,, , E&,,,, , and E&,,, were assigned zero values. 

The stability of time marching computations can be examined by considering 
solutions of the form 

Un+(l ‘2) 
7n 

_ d,(K) eir,tKd2e-i(n+(l!2))wodt 
3 

X+~/Z) = d2W) e 
i(11+(1/2"Kdae--inw(K)dt 

3 

E~+w~) = d,(K) e 
i(rrl+(l/2))Kdse-inw(K)dt 

By substitution into Eqs. (29)-(31), we find that the wave number K and frequency 
w were related by the dispersion relation 

sin2 KAx - 2 Ax 
i 1 

sin2(w At/2) 
2 c At 1 - 4(~/At)~ eiwdt sin2(w At/2) ’ (32) 

The values of the growth factor e-iurdt are obtained from the roots of (32). When 
the phase UJ At is spit into real and imaginary parts, w At = v - i#, Eq. (32) 
gives the following relations between y and #, 

8a2fi2e* sin q~ 
sin F sinh # = / 1 + 4a2e*eia ,2 7 (33) 

(34) 

where 
- 2 

$= s 
( 1 

KAx sin2 - , 
2 

For stability, we require that the roots of Eqs. (33) and (34) have nonnegative #. 
When sin y # 0, only positive values of $ satisfy Eq. (33). Thus, all complex 
growth factors have magnitudes less than 1. Moreover, it is not difficult to show 
from Eq. (34) that the growth factor cannot be real and positive. The magnitude 
of negative growth factors is governed by Eq. (34), where F = rr and can be 
obtained from 

w2 cosh#= -1 -t1-4a2e”. 
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The roots of this equation occur for values of # for which the right-hand side is 
greater than or equal to 1. However, it is not difficult to show that the right-hand 
side is greater than 1 only when e* lies between (1 - /P)/4a2 and 1/4a2. Thus, for 
all roots, the values of 4 are such that 

Clearly, the roots will have # positive if (1 - p”)/401” > 1. Hence, in all cases, 
the time marching computations are stable if 

4 (g)’ + (G)’ < 1. 

When a is equal to zero, Eq. (35) gives the familiar condition for elastic equations. 
However, for nonzero values of a, stability cannot be ensured with zone width 
smaller than 2Ta. Thus, the scheme is useful only in computations of long wave- 
length motion. 

PHASE VELOCITY OF FINITE DIFFERENCE WAVES AND 
LIMITATIONS PLACED ON THE MESH VARIABLES 

The analytical solution of the finite difference equations for a velocity boundary 
condition may be investigated by separation of variable techniques. The fields may 
be written as 

1 Un+(l/z) = _ 
.,,:z 

m 
7 I --T!2 A( 

w eiK(w)md2e-iln+(li2))w(2ai~) &.,, 
) 

3 

~~+(112) = - i /:‘r2 J’(w) 4~) e iK(w)(nl+(l/2))dre-inw(2n/7) &, > 7 

-%+(1/z) = A 7 /:‘r2 W(w) A(o) e iK(w)(n1+(l/2))dze-i~~(2~/r) dw 
3 

T 

where 
r = 2n-/At, 

A(w) = f o(t r+c1/29 ei(r+(l~2Hw(2n/T)~ 

*=cl 

The wave number K and functions Y and W are obtained by substitution in 
(29)-(31). The wave number K and frequency w are related by the previously 
obtained dispersion relation (32). A low frequency investigation of this relation 

SsI/20/3-3 
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shows that the phase velocity V>(w), VD(w) = w/K(w), of the finite difference 
waves has the expansion 

A comparison of this expansion and Eq. (9) indicates that, for calculations of long 
wavelength motion in periodic elastic media, more limitations than the stability 
conditions must be placed on dx and dr. 

a. Limitations Placed on At 

The high-order cubic frequency term in the low frequency phase velocity 
expansion creates energy losses [7]. Evidently, the dissipation has been introduced 
from the desired (for starting the computations from zero initial conditions, and 
for making the scheme explicit) backward-in-time representation of a?E,, . When 
At is sufficiently small, this term, which is the dominant term responsible for dissi- 
pation in the long wavelength part of the spectrum, can be made negligible at 
long wavelengths. An estimate of how small At should be may be obtained from 
the long wavelength expression for the propagation factor h, X = eiKr, where 
x = m Ax. From Eq. (36), we find that 

Thus, in the long wavelength part of the spectrum, the propagation factor may be 
approximated as follows 

Therefore, the long wavelength dissipation will be small when, for / w / < I/a, the 
exponential term is close to unity, i.e., for At small enough that 

b. Limitations Piaced on Ax 

The quadratic coefficient in the low frequency phase velocity expansion contains 
a term that goes to zero as a - 0 and a term independent of a. When At is small, 
the latter term, which arises from the low-order spatial discretizations employed 
by the Neumann-Richtmyer scheme [8], has minimum effect provided that Ax 
is as small as possible. Accordingly, in order that the second-order dispersion of 
the von Neumann-Richtmyer scheme does not mask the second-order dispersion 
of the heterogeneous medium waves, the mesh size must be close to the stability 
limit 2Fa. 
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EXAMPLE 

To generate an example that gives an idea of the accuracy of the computational 
model in calculations of long wavelength motion, the results for a velocity boundary 
condition were compared to the known exact solution of a periodic bilaminate [9]. 
The first bilaminate layer starts at x = 0, is 0.8 cm wide, has a density of 1 g/cm3, 
and a sound speed of 1 cmipsec. The second layer, which is 0.2 cm wide, is weaker 
than the first. Its density and sound speed have the values 0.5 g/cm3 and 0.5 cm/psec, 
respectively. Beyond the second layer, the bilaminate repeats itself with period 
1 cm. The values of the parameters p, 2, and CI are, respectively, 0.9 g/cm3, 
0.68041 cm/psec, and 0.2351 psec. The boundary velocity is a square pulse of 
height U,, cm/psec and duration 7.2 psec. The time step and zone size have the 
values 0.005 psec and 0.35 cm, respectively. 

Figures 1 and 2 display the calculational and exact particle velocity and stress 
profiles that develop at positions x = 35 cm and x = 7 cm. The figures show that 
the computational model is capable of reproducing some of the effects of the 
heterogeneities on the square pulse. In particular, the wave front erosion, which 
is generated from repeated reflections from the bilaminate interfaces, and the main 
low frequency wave body are reproduced rather accurately. However, it is evident 
that the more rapid oscillations, which follow the main wave body and are heavily 
attenuated, have incorrect phasing. Thus, it seems probable that a more accurate 
reproduction of these oscillations would have to employ a nondissipative scheme 
that provides higher-order low frequency approximations to the wave phase 
velocity. 

The profiles at x = 1 cm displayed in Fig. 3 show an interesting phenomenon. 
Whereas the particle velocity is reproduced satisfactorily. the stress is not. It is 
evident, however, that in contrast to the exact stress profiles at 7 cm and 35 cm, 
the exact stress profile at I cm contains strong high frequency components, The 
nature of these high frequencies has been explained in 193. It turns out that the 
near boundary behavior of the velocity and stress can be dominated by resonance 
phenomena that occur at frequencies at which the wave impedance Z+(W) defined 
in Eq. (8) has poles (or zeros if a stress boundary condition is used). To obtain a 
limited understanding of the resonance condition in an arbitrary periodic medium 
one may utilizer a similar method to the one used in [9]. In particular, with this anal- 
ysis one can show from Eq. (8) that all resonances can occur either at frequencies 
where the group velocity U&W), v,(w) = %w/i?k where k = W/U,, is complex, 
or at frequencies where sin kL = 0 [lo]. Although this analysis does not rule out 
the possibility of some resonances occurring at frequencies where sin kL = 0, 
and where it happens that the group velocity is real and nonzero, nevertheless, 
no calculation or experiment has provided evidence for propagating resonance 
phenomena. Accordingly, from the possible resonance locations mentioned above, 
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one would expect that only frequencies where the group velocity is complex, or 
possibly zero, can resonate. Therefore, the resonance phenomena should decay 
very rapidly with distance without influencing the solution at ranges whose distance 
from the boundary is larger than a few periods. 

CONCLUSIONS 

The uniaxial motion of heterogeneous periodic elastic media was investigated. 
It was shown that for long wavelengths, the harmonic motion of any periodic 
medium can be approximated by the motion of suitably chosen homogeneous 
dispersive media. The simplest of these media has a constitutive relation that 
contains, in addition to the usual Hookean term, an extra term that is proportional 
to the second time derivative of the strain. The proportionality constant is related 
to the dominant coefficient of the low frequency power series expansion of the 
phase velocity of the periodic medium. 

The transient properties of this simple medium were examined and a particular 
set of finite difference equations, which are based on the von Neumann-Richtmyer 
scheme, was analyzed. Stability was investigated with the von Neumann-Richtmyer 
method. It was shown that for the scheme to be stable, the mesh size cannot be 
smaller than a certain characteristic length that is proportional to the coefficient 
of the extra term in the constitutive relation. Particular choices of dx and dt that 
are useful for modeling long wavelength propagation in periodic media were 
obtained by examining the low frequency dispersion characteristics of the finite 
difference waves. An application of the difference equations to calculations of 
transient motion was given. 

ACKNOWLEDGMENTS 

This work was supported in part by the Defense Atomic Support Agency under Contract 
DASAOI-70-C-0074. The author would like to thank Dr. John G. Trulio of Applied Theory, 
Inc., Professor P. Saffman of the California Institute of Technology, Dr. Michael El Raheb of 
Tetra Tech, Inc., and reviewers of this and other journals for their comments on various aspects of 
the problem that were given an incomplete treatment in earlier drafts of this paper. 

REFERENCES 

1. G. N. BALANIS, J. Murh. Phys. 16 (1975). 1383. 
2. Although these expansions are not explicitly given in [l], nevertheless, they can be easily 

obtained since. they depend on quantities whose expansions were included in this reference. 
3. It is noted that there are many ways of writing the constitutive relation for the purpose of 

obtaining the desired phase velocity low frequency dependence. The way chosen is in direct 



296 GEORGE N. BALANIS 

analogy to the case of viscoelastic media. When there is dissipation I),, has, in general, the 
low frequency expansion 

v, = E(1 - iv,w - v2w2 - iv,d - .e*), 

where ~3~ , vt , us ,... are real constants. When ~3, 2 is approximated by its dominant low fre- 
quency terms, 

vD2 m ?(I - 2ivlw), 

the well-known constitutive relation of viscoelasticity is obtained. 
4. Similar remarks apply to the three-dimensional dispersive media, whose constitutive equation 

is 

where oil and at are the longitudinal and transverse dispersion constants, which may be useful 
in modeling the long wavelength propagation in heterogeneous media exhibiting a homoge- 
neous and isotropic macroscopic elastic behavior. 

5. I. S. GRADSHTEYN AND I. M. RYZHIK, “Table of Integrals, Series and Products,” p. 406, 410. 
Academic Press, New York, 1965. 

6. J. VON NEUMANN AND R. D. RICHTMYER, J. Appt. Phys. 21 (1950), 232. 
7. It may be worthwhile to note that the third-order dissipation may make attractive the in- 

clusion of the term C& in some calculations with the von Neumann-Richtmyer scheme, 
where dissipation of order higher than the hrst is desired. In such application, the choice 
of n as a small parameter tied to the mesh size, say 

a* = a(Ax/E)*, 

where a is a positive constant less than 0.25, may be useful. 
8. It may be worthwhile to note that, for zero 3t, the characteristic relation of the von Neumann- 

Richtmyer scheme (Eq. (32), where a* = 0, Ar = 0) reduces to the dispersion relation for 
longitudinal oscillations in a system of equal masses and springs. Accordingly, alternative 
numerical applications that do not generate any dissipation and are not tied to the homoge- 
neous dispersive medium may be obtained by utilizing the dispersion properties of the von 
Neumann-Richtmyer scheme without introducing the term u%~~. In such applications, 
one could use special choices of Ax and At that are attractive (for reasons of economy or 
other particular reasons) and satisfy (within the stability limit of the von Neumann-Richtmyer 
scheme) the equation 

(Ax/q2 - (At)Z = 12d. 

9. G. N. BALANIS, J. Appl. Mech. 40 (1973), 815. 
10. As seen from Eq. (8), when o corresponds to a pole or zero of Z+(w), then 6&, w) = 0 

or b&C, w) = 0. However, since the determinant of matrix B(L, o) is equal to 1, it follows 
that at the resonances b&C, w)b&, w) = 1. This result and Eq. (7) show that 

jcoskLI > 1. 



LONG WAVELENGTH APPROXIMATIONS 

However, the group velocity is given by 

2L(l - co9 /CL)‘/2 
ug(w) = (Ww)[b&, w) -I- b,,(L, w)] * 

Thus, at the resonant frequencies at which sin kL # 0, the group velocity is complex. 

297 


